12 research outputs found

    Combining continuous spatial and temporal scales for SGD investigations using UAV-based thermal infrared measurements

    Get PDF
    Submarine groundwater discharge (SGD) is highly variable in spatial and temporal terms due to the interplay of several terrestrial and marine processes. While discrete in situ measurements may provide a continuous temporal scale to investigate underlying processes and thus account for temporal heterogeneity, remotely sensed thermal infrared radiation sheds light on the spatial heterogeneity as it provides a continuous spatial scale. Here we report results of the combination of both the continuous spatial and temporal scales, using the ability of an unmanned aerial vehicle (UAV) to hover above a predefined location, and the continuous recording of thermal radiation of a coastal area at the Dead Sea (Israel). With a flight altitude of 65&thinsp;m above the water surface resulting in a spatial resolution of 13&thinsp;cm and a thermal camera (FLIR Tau2) that measures the upwelling long-wave infrared radiation at 4&thinsp;Hz resolution, we are able to generate a time series of thermal radiation images that allows us to analyse spatio-temporal SGD dynamics. In turn, focused SGD spots, otherwise camouflaged by strong lateral flow dynamics, are revealed that may not be observed on single thermal radiation images. The spatio-temporal behaviour of an SGD-induced thermal radiation pattern varies in size and over time by up to 155&thinsp;% for focused SGDs and by up to 600&thinsp;% for diffuse SGDs due to different underlying flow dynamics. These flow dynamics even display a short-term periodicity of the order of 20 to 78&thinsp;s for diffuse SGD, which we attribute to an interplay between conduit maturity–geometry and wave set-up.</p

    How to identify groundwater-caused thermal anomalies in lakes based on multi-temporal satellite data in semi-arid regions

    Get PDF
    The deduction by conventional means of qualitative and quantitative information about groundwater discharge into lakes is complicated. Nevertheless, at least for semi-arid regions with limited surface water availability, this information is crucial to ensure future water availability for drinking and irrigation purposes. <br><br> Overcoming this lack of discharge information, we present a satellite-based multi-temporal sea-surface-temperature (SST) approach. It exploits the occurrence of thermal anomalies to outline groundwater discharge locations using the example of the Dead Sea. Based on a set of 19 Landsat Enhanced Thematic Mapper (ETM+) images 6.2 (high gain), recorded between 2000 and 2002, we developed a novel approach which includes (i) an objective exclusion of surface-runoff-influenced data which would otherwise lead to erroneous results and (ii) a temporal SST variability analysis based on six statistical measures amplifying thermal anomalies caused by groundwater. <br><br> After excluding data influenced by surface runoff, we concluded that spatial anomaly patterns of the standard deviation and range of the SST data series spatially fit best to in situ observed discharge locations and, hence, are most suitable for detecting groundwater discharge sites

    New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project

    Get PDF
    The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~ 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments

    A multi-environmental tracer study to determine groundwater residence times and recharge in a structurally complex multi-aquifer system

    Get PDF
    Despite being the main drinking water resource for over 5 million people, the water balance of the Eastern Mountain Aquifer system on the western side of the Dead Sea is poorly understood. The regional aquifer consists of fractured and karstified limestone – aquifers of Cretaceous age, and it can be separated into a Cenomanian aquifer (upper aquifer) and Albian aquifer (lower aquifer). Both aquifers are exposed along the mountain ridge around Jerusalem, which is the main recharge area. From here, the recharged groundwater flows in a highly karstified aquifer system towards the east and discharges in springs in the lower Jordan Valley and Dead Sea region. We investigated the Eastern Mountain Aquifer system for groundwater flow, groundwater age and potential mixtures, and groundwater recharge. We combined 36Cl ∕ Cl, tritium, and the anthropogenic gases SF6, CFC-12 (chlorofluorocarbon) and CFC-11, while using CFC-113 as “dating” tracers to estimate the young water components inside the Eastern Mountain Aquifer system. By application of lumped parameter models, we verified young groundwater components from the last 10 to 30 years and an admixture of a groundwater component older than about 70 years. Concentrations of nitrate, simazine (pesticide), acesulfame K (ACE-K; artificial sweetener) and naproxen (NAP; drug) in the groundwater were further indications of infiltration during the last 30 years. The combination of multiple environmental tracers and lumped parameter modelling helped to understand the groundwater age distribution and to estimate recharge despite scarce data in this very complex hydrogeological setting. Our groundwater recharge rates support groundwater management of this politically difficult area and can be used to inform and calibrate ongoing groundwater flow models.Cornelia Wilske, Axel Suckow, Ulf Mallast, Christiane Meier, Silke Merchel, Broder Merkel ... et al

    USING ENVIRONMENT TRACERS FOR INVESTIGATION OF BLACK SEA POLUSHION

    No full text
    In order to determine the groundwater discharge (SGD) areas into the sea during studies had been implemented and selected the new methodology of using ecological tracers, such as stable isotopes 18O and 2H, radionuclide Rn and Ra and other parameters. On the territory of Kobulety had been defined the groundwater flow direction and the areas of their submarine discharge. Within the identified areas was defined the intensity of eutrofication –the value of nitrate and phosphate content in groundwaters and in the sea. Also, had been studied their distribution on the surface and intensity of outwash into the sea

    Challenges to estimate surface- and groundwater flow in arid regions: The Dead Sea catchment

    No full text
    The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(-1) west and to 179 mm a(-1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58-66 x 10(6) m(3) a(-1) (western wadis: 7-15 x 10(6) m(3) a(-1); eastern wadis: 51 x 10(6) m(3) a(-1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 x 106 m(3) a(-1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters. The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole. (C) 2014 Elsevier B.V. All rights reserved
    corecore